No title

BATHULA PRAVEEN (BP)
0

 


import numpy as np

import pandas as pd

from sklearn import linear_model


#X represents the size of a tumor in centimeters.

X = np.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).r

#Note: X has to be reshaped into a column from a row for the LogisticRegression() functi

#y represents whether or not the tumor is cancerous (@ for "No", 1 for "Yes").

y = np.array([0,0,0,0,0, 0, 1, 1, 1, 1, 1, 1])




In [3]:

X


Out[3]:


array([[3.78],


[2.44],

[2.09],

[e.14],

[1.72],

[1.65],

[4.92],

[4.37],

[4.96],

[4.52],

[3.69],

[5.88]1)


In [4]: |

y

out[4]:

array([0, ©, ©, 0, 0, 0, 1, 1, 1, 1, 1, 1])




In [5]: M

logr = linear_model.LogisticRegression()

logr.fit(X,y)



Out[5]:

LogisticRegression()


In [6]:

#predict if tumor is cancerous where the size is 3.46mm:

predicted = logr.predict(np.array([3.46]).reshape(-1,1))

predicted


out[6]:

array([0])






Post a Comment

0Comments

Post a Comment (0)