No title

BATHULA PRAVEEN (BP)
0

 


Step-1:Assigning features and label variables

weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy','Overcast','Sunny','Sunny',

'Rainy','Sunny','Overcast','Overcast','Rainy']

temp=['Hot','Hot','Hot','Mild','Cool','Cool','Cool','Mild','Cool','Mild','Mild','Mild','Hot','Mild']

play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','No']


Step-2: Encoding the data

[95]: # Import LabelEncoder

from sklearn import preprocessing

#creating labelEncoder

le = preprocessing.LabelEncoder()

# Converting string labels into numbers.

wheather_encoded=le.fit_transform(weather)

print(wheather_encoded)

[2 2 0 1 1 1 0 2 2 1 2 0 0 1]

[97]: # Converting string labels into numbers

temp_encoded=le.fit_transform(temp)

label=le.fit_transform(play)

print("Temp:",temp_encoded)

print("Play:",label)


Temp: [1 1 1 2 0 0 0 2 0 2 2 2 1 2]

Play: [0 0 1 1 1 0 1 0 1 1 1 1 1 0]


Step-3:Combinig weather and temp into single listof tuples

[102]: features=zip(wheather_encoded,temp_encoded)

final=list(features)

[103]: final

[103]: [(2, 1),

(2, 1),

(0, 1),

(1, 2),

(1, 0),

(1, 0),

(0, 0),

(2, 2),

(2, 0),

(1, 2),

(2, 2),

(0, 2),

(0, 1),

(1, 2)]


Step-4: Fitting the model and predicting the classfier

[104]: #Import Gaussian Naive Bayes model

from sklearn.naive_bayes import GaussianNB

#Create a Gaussian Classifier

model = GaussianNB()

# Train the model using the training sets

model.fit(final,label)

#Predict Output

predicted= model.predict([[0,2]]) # 0:Overcast, 2:Mild

print("Predicted Value:", predicted)


Predicted Value: [1]

#Here, 1 indicates that players can ‘play’

Post a Comment

0Comments

Post a Comment (0)