Matplotlib(Python for data science)

BATHULA PRAVEEN (BP)
0

 Matplotlib

 Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms.



1) Prepare The Data

 1D Data

>>> import numpy as np

>>> x = np.linspace(0, 10, 100)

>>> y = np.cos(x)

>>> z = np.sin(x)

2D Data or Images

>>> data = 2 * np.random.random((10, 10))

 >>> data2 = 3 * np.random.random((10, 10))

 >>> Y, X = np.mgrid[-3:3:100j, -3:3:100j]

 >>> U = -1 - X**2 + Y >>> V = 1 + X - Y**2

>>> from matplotlib.cbook import get_sample_data

>>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))

2) Create Plot

    >>> import matplotlib.pyplot as plt

Figure

>>> fig = plt.figure()

           >>> fig2 = plt.figure(figsize=plt.figaspect(2.0)

           Axes

           All plotting is done with respect to an Axes. In most cases, a subplot will fit your needs. A subplot is an axes on a grid system.

         >>> fig.add_axes()

        >>> ax1 = fig.add_subplot(221) # row-col-num

        >>> ax3 = fig.add_subplot(212)

       >>> fig3, axes = plt.subplots(nrows=2,ncols=2)

       >>> fig4, axes2 = plt.subplots(ncols=3)

3) Plotting Routines

   1D Data

   >>> fig, ax = plt.subplots()

    >>> lines = ax.plot(x,y) Draw points with lines or markers connecting them

>>> ax.scatter(x,y) Draw unconnected points, scaled or colored >>> axes[0,0].bar([1,2,3],[3,4,5]) Plot vertical rectangles (constant width) >>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) Plot horiontal rectangles (constant height)

>>> axes[1,1].axhline(0.45) Draw a horizontal line across axes

  >>> axes[0,1].axvline(0.65) Draw a vertical line across axes

 >>> ax.fill(x,y,color='blue') Draw filled polygons

>>> ax.fill_between(x,y,color='yellow') Fill between y-values and 0

          Vector Fields

         >>> axes[0,1].arrow(0,0,0.5,0.5) Add an arrow to the axes

         >>> axes[1,1].quiver(y,z) Plot a 2D field of arrows

        >>> axes[0,1].streamplot(X,Y,U,V) Plot a 2D field of arrows

         Data Distributions

         >>> ax1.hist(y) Plot a histogram

         >>> ax3.boxplot(y) Make a box and whisker plot

          >>> ax3.violinplot(z) Make a violin plot

          2D Data or Images

         >>> fig, ax = plt.subplots()

         >>> im = ax.imshow(img,

                                         cmap='gist_earth', Colormapped or RGB arrays

                                          interpolation='nearest',

                                          vmin=-2,

                                          vmax=2)

         >>> axes2[0].pcolor(data2) Pseudocolor plot of 2D array

         >>> axes2[0].pcolormesh(data) Pseudocolor plot of 2D array

        >>> CS = plt.contour(Y,X,U) Plot contours

        >>> axes2[2].contourf(data1) Plot filled contours

        >>> axes2[2]= ax.clabel(CS) Label a contour plot

4) Customize Plot

Colors, Color Bars & Color Maps

>>> plt.plot(x, x, x, x**2, x, x**3)

>>> ax.plot(x, y, alpha = 0.4)

>>> ax.plot(x, y, c='k')

>>> fig.colorbar(im, orientation='horizontal')

>>> im = ax.imshow(img,

                                    cmap='seismic')

Markers

>>> fig, ax = plt.subplots()

>>> ax.scatter(x,y,marker=".")

 >>> ax.plot(x,y,marker="o")

Linestyles

>>> plt.plot(x,y,linewidth=4.0)

>>> plt.plot(x,y,ls='solid')

>>> plt.plot(x,y,ls='--')

>>> plt.plot(x,y,'--',x**2,y**2,'-.')

>>> plt.setp(lines,color='r',linewidth=4.0)

Text & Annotations

>>> ax.text(1,

                      -2.1,

                      'Example Graph',

                       style='italic')

 >>> ax.annotate("Sine",

                                xy=(8, 0),

                               xycoords='data',

                               xytext=(10.5, 0),

                               textcoords='data',

                               arrowprops=dict(arrowstyle="->",

                               connectionstyle="arc3"),)

Mathtext

>>> plt.title(r'$sigma_i=15$', fontsize=20)

Limits, Legends & Layouts

Limits & Autoscaling

>>> ax.margins(x=0.0,y=0.1) Add padding to a plot

>>> ax.axis('equal') Set the aspect ratio of the plot to 1 >>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5]) Set limits for x-and y-axis

>>> ax.set_xlim(0,10.5) Set limits for x-axis

   Legends

>>> ax.set(title='An Example Axes',

                    ylabel='Y-Axis', Set a title and x-and y-axis labels

                    xlabel='X-Axis')

 >>> ax.legend(loc='best') No overlapping plot elements

Ticks

>>> ax.xaxis.set(ticks=range(1,5), Manually set x-ticks

                             ticklabels=[3,100,-12,"foo"])

 >>> ax.tick_params(axis='y', Make y-ticks longer and go in and out

                                     direction='inout',

                                   length=10)

 Subplot Spacing

>>> fig3.subplots_adjust(wspace=0.5, Adjust the spacing between subplots hspace=0.3,

                                             left=0.125,

                                             right=0.9,

                                             top=0.9,

                                              bottom=0.1)

>>> fig.tight_layout() Fit subplot(s) in to the figure area Axis Spines

>>> ax1.spines['top'].set_visible(False) Make the top axis line for a plot invisible

 >>> ax1.spines['bottom'].set_position(('outward',10)) Move the bottom axis line outward

5) Save Plot

 Save figures

 >>> plt.savefig('foo.png') Save transparent figures

>>> plt.savefig('foo.png', transparent=True)

6) Show Plot

 >>> plt.show()

     Close & Clear

>>> plt.cla() Clear an axis

>>> plt.clf() Clear the entire figure

 >>> plt.close() Close a window


Post a Comment

0Comments

Post a Comment (0)